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Abstract 

A Bayesian importance sampling method is developed to efficiently and accurately calibrate the 

parameters of non-linear and non-Gaussian system models. The UIS consists of two stages. The first 

stage uses the latest monitoring data to generate a Gaussian approximation of the true posterior 

distribution of the uncertain parameters and utilizes the measurement update stage of the 

Unscented Kalman Filter (UKF) to approximate the posterior. The second stage of UIS uses a 

mixture of approximate posterior computed in the first stage and a heavy tailed distribution as the 

proposal distribution for Bayesian importance sampling. UIS is repeated whenever new monitoring 

data becomes available. Two case studies were developed to study the UIS method and to compare 

it UKF and Importance Sampling (IS) methods: a non-linear analytical system model and 

synthesized CO2 injection model using a numerical multi-phase flow simulator. In analytical case 

study, it is shown that UIS is more accurate than both UKF and traditional IS with static proposal 

and the relative accuracy of the UIS over traditional IS increases with dimensionality of the 

parameter space. The higher accuracy of UIS compared to UKF and traditional IS with static 

proposal is also shown in the CO2 injection case study. It is also shown that increasing number of 

samples and a defensive mixture distribution with a mixture ratio between 0.1 and 0.25 enhances 

the performance of UIS.  
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1. Introduction 

Risk assessment and management are inevitable components of any CO2 Sequestration (CS) project 

(Kopp, et al., 2010)(Walton, et al., 2004). One challenge often faced when performing risk 

assessment for CS and other engineered systems is that system models tend to be extremely 

computationally expensive and involve many uncertain parameters. The behavior of a CS system 

will be uncertain at the start of injection and so CS sites will be continuously monitored (Lawton, et 

al., 2010)(Lawton, 2010).  Methods for using monitoring data to reduce system model uncertainty 

over the lifetime of a project are therefore desirable. The primary contribution of this article is 

development of a new Bayesian calibration method, Unscented Importance Sampling (UIS), which 

continuously, accurately, and efficiently calibrates the uncertain and non-Gaussian parameter 

distributions of complex and non-linear system models using continuously streaming monitoring 

data. Accuracy, computational efficiency and compatibility with non-linear system models and non-

Gaussian probability distributions are the key features of the UIS. The UIS is described in terms of a 

general system model, and is applied to a non-linear analytical system model and a multiphase flow 

system model of CO2 injection into a heterogeneous aquifer.  

 There are various sources of uncertainty in CS systems - e.g., the uncertain geological properties of 

the injection site (Alshuhail, et al., 2009)(Lavoie & Keith, 2010)(Hongjun, et al., 2010), modelling 

strategies (Nordbotten, et al., 2012), uncertain monitoring data (Sato, 2011) and uncertain 

consequences of unwanted incidents (Li & Fall, 2013) - negatively impact the quality of risk 

assessment (Sarkarfarshi, et al., 2014). Consequently, the effectiveness of risk management and 

decision making is impaired. In CS, parameter uncertainty is believed to be one of the most 

significant sources of uncertainty among the other sources. In CS projects, data from core samples 

is limited and sparse, because drilling wells for obtaining core samples penetrate the caprock of the 

target formation and creates potential leakage pathways for supercritical CO2. Remote 

measurements - e.g. by seismic surveys - of physical parameters of the subsurface are subject to 

significant uncertainty. Consequently, knowledge of system parameters is likely to be sparse and 

uncertain at the beginning of a project and expert opinion is likely to play a significant role in 

characterizing initial parameter distributions. 

Risk and uncertainty assessment in a CS context is considered in several works; however, few have 

had a quantitative basis. Notable quantitative risk and uncertainty analysis studies include risk 

assessment methods for site selection (Kopp, et al., 2010), significance of consequences of failure 

(Price & Oldenburg, 2009) and stochastic plume migration and leakage forecast (Walton, et al., 
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2004) (Kopp, et al., 2010)(Oladyshkin, et al., 2011). The emphasis for these earlier assessments was 

pre-injection and they may be suboptimal for risk assessment and management over the lifetime of 

a CS project since monitoring data is not incorporated directly to calibrate parameter distributions 

and to make model forecasts.   

Data acquired from site monitoring provides valuable information about the current behaviour of a 

CS system. Several existing monitoring techniques are applicable to CS such as 3D and 4D seismic 

(Chadwick, et al., 2004), gravity (Nooner, et al., 2007), electromagnetic (Hoversten, et al., 2004), 

time lapse satellite imaging (INSAR) (Raikes, et al., 2008) and fluid sampling (Freifeld, et al., 2005). 

To date there has been a limited number of works focusing on how such monitoring data can be 

incorporated into the calibration of CS models. (Johnson & White, 2012) used Markov Chain Monte 

Carlo (MCMC) for inversing seismic signals to refine the permeability fields; (Bhowmik, et al., 2011) 

stochastically calibrated the permeability field in a synthesized CS system using pressure data from 

injection and monitoring wells; Finally, (Espinet & Shoemaker, 2013) and (Tavakoli, et al., 2013) 

compared several deterministic and stochastic calibration algorithms, respectively, using 

synthesized case studies in CS systems. Due to limitations of the abovementioned works,  e.g. being 

either deterministic, computationally demanding or using assumptions such as linearity of the 

models or Gaussian structure of the probability distributions, more research is required to study, 

adopt and developed efficient methods for calibration of CS systems which are accurate, 

computationally efficient and able to calibrate.  

For purpose of parameter uncertainty mitigation of CS models, UIS is developed and presented in 

this manuscript. The UIS methodology presented in this manuscript contributes to computationally 

efficient and stochastic calibration of non-linear models such as those used is CS systems without 

assuming linear models and Gaussian probability distributions. UIS is a stochastic calibration 

algorithm, which incorporates both expert opinion and noisy time-lapse monitoring data. In UIS, 

the proposal distribution of Bayesian importance sampling method (Marshall, 1956) is 

continuously updated utilizing the latest monitoring data to improve sample quality and mitigate 

the demand for larger sample size. The proposal density is constructed by mixing a computationally 

efficient version of Kalman Filters and a heavy-tailed defensive distribution (Hesterberg, 1995). The 

defensive distribution has two roles. The first role is to ensure the robustness of the importance 

sampling step, and the second role is to allow the algorithm seek parameters that are not assigned a 

high probability initially but might gain large likelihood and improve the sample quality. Mixture 

ratio between Kalman filter output and the defensive distribution is a tuning parameter of UIS. 

While a version of the Kalman Filter is used for constructing the proposal density, actual probability 
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distributions of the parameters are not required to be Gaussian. As a result, UIS is more versatile for 

parameter estimation than most Kalman Filter-based methods. 

In Section 2, Bayesian parameter calibration and UIS are described mathematically. In Section 3, 

application of UIS is presented in a simple analytical case study. In Section 4, UIS is applied on a 

more sophisticated CS case study, the sensitivity of UIS to tuning parameters is investigated and 

results are discussed.. Conclusions are presented in Section 5. 

2. Bayesian parameter estimation 

Bayesian frameworks allow updating prior parameter data and expert opinion using site 

monitoring data. In this section, several solutions to Bayes formula - e.g., the measurement update 

stage of Kalman Filter (KF), Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and 

Importance Sampling (IS) – are presented to lay a theoretical foundation for the discussion of the 

UIS. Next, the importance of the proposal distribution in IS is illustrated, and finally, the UIS 

algorithm is presented, including underlying formulation for recursively obtaining better proposal 

distributions for IS incorporating all available monitoring data. 

2.1 Bayes Rule 

Assume that   is the model parameter vector. For simplicity, assume that the parameter space,   , 

is continuous1., Let  ( | ) denote the probability distribution of   conditioned by observations  . 

According to the Bayes rule,  ( | ) is proportional to the product of the unconditioned probability 

distribution of  ,  ( ), and the likelihood of   given  ,  ( | ), i.e. 

 ( | )       ( | ) ( ) (1)  

where   is a normalizing constant and is given by 

  ∫  ( | ) ( )  
  

 (2)  

and where  ( ) is the prior distribution, which represents the prior knowledge of   while the 

observations   are not accounted for (Rougier, 2008). The prior is a subjective judgement of reality 

and can be assigned based on initial measurements, data from similar sites, expert opinion, 

                                                             
1 For a discrete parameter space, all integrals whill be replaced by summation. 
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parameter bounds, etc (Liu, et al., 2010). The likelihood, unlike probability which predicts 

occurrence of an unknown event based on known parameters, allows us to predict unknown 

parameters using known observations (Hall, et al., 2012). The posterior distribution,  ( | ), 

represents the probability distribution of   accounting for the observations and can be interpreted 

as the calibrated version of the prior given  . 

Let    [ (     )|      ] denote the true behaviour of the CS system (e.g. the CO2 saturation 

distribution in a saline aquifer) at time    and at locations    to    
 where    is number of 

measurements at time   . The   index in    indicates that the number of measurements can be 

different at each time step (or calibration cycle). Let    denote measurements of    at time    and at 

locations    to    
 with a random measurement noise,  , as shown in equation (3), 

                     ( ) (3)  

where   ( ) denotes the distribution of the measurement error. It is fairly standard and realistic to 

assume   is not correlated with    nor time (Rougier, 2008).  

Let   ( )  [ (         )|      ] denote a deterministic system model of the system 

behaviour at time    and at locations    to    
. The system model is parameterized by a set of 

deterministic parameters   and a set of uncertain parameters   [  |     ], where    denotes 

uncertain model parameter  . Let  ( ) denote an n-dimensional probability distribution that 

reflects the uncertainty in  . 

The difference between the model and true system behaviour,        , is called the model 

discrepancy (Rougier, 2008). It is assumed that the model discrepancy is also a random variable 

with distribution,   ( ), and that it is independent from   and time (Kaipio & Somersalo, 2007). 

Thus, we can re-write equation (3) as follows: 

     ( )                   ( )             ( ) (4)  

Let       and let    ( ) denote the distribution of  . In fact,   reflects the uncertainty of model 

and measurement when the ideal   is used (Li, et al., 2004). The likelihood of the measurement    

given   can be then calculated as 

 (  | )    ( )    ( 
    ( )) (5)  
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Unlike   ( ),   ( ) is less likely to be known a priori. The modeling discrepancy,  , can be ignored 

only if it is negligible compared to measurement noise; otherwise, it should be prescribed.  When 

the modeling discrepancy is not negligible,    can be estimated by a least squares method 

(Stedinger, et al., 2008) or alternatively, the hyper-parameters of    can be included in the 

uncertain parameter vector  .  

Combining equations (5) and (1), the posterior distribution of  ( ) can be obtained as 

 ( |  )  
  ( 

    ( )) ( )

∫   ( 
    ( )) ( )  

  

 (6)  

The posterior distribution in equation (6) at time    becomes the prior distribution for time     . 

For simplicity of notation, we denote the initial prior distribution by   ( ), the posterior 

distribution at time    by   ( )   ( |  ),  the posterior distribution at time    by   ( ), so on 

and so forth. 

2.2 Kalman Filter 

Analytical solution to (6) is available only if  ( ) and   ( 
    ( )) follow specific pairs of 

distribution known as conjugate families, which are reported widely in statistics literature. Due to 

the nonlinearity of   ( ) in the CS models it is unlikely that  ( ) and    ( 
    ( )) belong to a 

conjugate family even if  ( ) and   ( ) belong to a conjugate family. 

When both  ( ) and   ( ) are Gaussian and   is linear, i.e.  ( )     and     (    ), the 

posterior distribution in (6) is also Gaussian and the mean (  ) and the covariance (  ) of the 

posterior distribution are 

       (     (  )) 

        ( (  )    )  
  

(7)  

where    and    are the prior mean and covariance,  (    ) is the prior covariance between   and 

  ( ) (calculated as     ),  (  ) is the prior covariance of    (calculated as      ), and   is the 

optimal Kalman gain calculated as 

   (    ) ( (  )    )
   (8)  
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Equation (7) and (8) are the measurement update stages of a Kalman filter (Kalman, 1960). While 

KFs are usually used for estimation of state of dynamic systems, measurement update stage of KF 

can also be used for parameter estimation, as described in (Wan & Merwe, 2001). 

If   is non-linear, it can be linearized about    using a first order Taylor series expansion, as done in 

Extended Kalman Filtering (EKF) formulation. An alternative solution is linearizing  ( ) in a 

process so called an Unscented Transformation (UT)(Terejanu, n.d.), by linear regression between 

system model outputs, given      deterministically chosen parameter sets. UT is basically a 

method for obtaining the statistics of a non-linear function (system model) of a random variable 

using the statistics of a finite number of points (Wan & Merwe, 2001) and it is the basis of the 

Unscented Kalman Filter (UKF) (Julier & Uhlmann, 1996). Unlike the EKF which is first order 

accurate, UKF is at least second order accurate for non-Gaussian probability densities and third 

order accurate for Gaussian probability densities (Chen, 2003). Another clear advantage of the UKF 

over the EKF is that it can be used with any non-linear function (system model) and does not 

require the calculation of the Jacobian or Hessian of the function (Chen, 2003), which is non-trivial 

when the system model is a numerical. 

Now we describe a simple version of UT for obtaining statistics (mean, covariance and cross 

covariance) of  ( ) when    ( ) and the mean and covariance of  ( ) are  ( ) and  ( ), 

respectively. For a parameter space of size  ,      weighted points are deterministically chosen 

so that their mean is equal to  ( ) and their covariance is equal to  ( ). These points are known as 

sigma points and are calculated as 

    ( ) 

        

     ( )  (√
 

    
 ( ))

 

                    

     ( )  (√
 

    
 ( ))

 

                         

   
    

  
                     

(9)  
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where (√
 

    
 ( ))

 

 is the  th row of the square root of 
 

    
 ( ), obtained by Cholesky 

decomposition and    are the weights.    is the weight of the first Sigma point and determines how 

scattered the sigma points are about   . The sigma points are then propagated through the non-

linear function  ,  

    (  )                     (10)  

The mean, covariance and cross covariance of the sigma points,   , and the propagated sigma 

points,   , are calculated as 

 ( )  ∑    

  

   

 

 ( )  ∑    

  

   

 

 ( )  ∑  [    ( )][    ( )] 
  

   

 

 (   )  ∑  [    ( )][    ( )] 
  

   

 

(11)  

Substituting (11) into (7), the posterior mean and covariance of   is approximated as 

    ( )   (     (  )) 

    ( )    (∑  [    ( )][    ( )] 
  

   

   )     

(12)  

where the Kalman gain is obtained by 

  (∑  [    ( )][    ( )] 
  

   

)  (∑  [    ( )][    ( )] 
  

   

   )

  

 (13)  
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Equations (12) and (13) are the measurement update stage of an UKF. For simplicity of notation, 

we denote the posterior Gaussian distribution   (     ) obtained from (12) and (13) by 

  ( ( )   ).  

An Alternative KF for non-linear systems is the Monte-Carlo approach to KF, known as Ensemble 

Kalman Filter (EnKF) (Evensen, 1994). EnKF has found application when number of variables are 

very large, e.g. in weather forecast (Houtekamer, et al., 2005), reservoir engineering (Aanonsen & 

Reynolds, 2009)(Naevdal, et al., 2005) and hydrology (Reichle, et al., 2002)(Shu, et al., 2005). In a 

recent study, (Tavakoli, et al., 2013) demonstrated how EnKF and other ensemble-based algorithms 

such as Ensemble Smoothers (ES) (van Leeuwen & Evensen, 1996) can be applied on CO2 

sequestration. Similar to UKF, EnKF does not require calculating the Jacobian of the models. For 

very high dimensional state vectors, EnKF is computationally more efficient than UKF (Kim, 2011). 

However, EnKF could be less accurate than UKF (Ambadan & Tang, 2009)(Mesbah, et al., 2011). 

2.3 Importance Sampling 

The KF-based solutions are not exact and can be inadequate if   is highly non-linear or the 

probability distributions are non-Gaussian (Leisenring & Moradkhani, 2011). A common solution to 

this issue is drawing random samples from the posterior distribution and describing its properties 

(e.g. moments and quintiles) with the properties of the samples (Rougier, 2008). Since the posterior 

distribution in (6) is usually unavailable, indirect sampling approaches such as IS or Markov Chain 

Monte Carlo (MCMC) can be used. In IS, we sample from a proposal distribution which is close to 

the posterior and is easy to sample from and weight the samples accordingly (Marshall, 1956). The 

proposal distribution encourages samples from areas of more importance, and the weighting 

ensures that the importance sampling estimator is unbiased. Equation (14) demonstrates the 

general formulation for IS,  

 ( )  ∑   (   ̅ )

 

   

           ̅   ( ) (14)  

where  ( ) is the probability distribution we want to sample from,  ( ) is the proposal 

distribution,  ̅  are the samples.    are normalized importance weights, evaluated as  

   
  

∑   
 
   

                (15)  



Page 10 of 39 

 

where     ( ̅ )  ( ̅ ). The statistics of  ( ) can then be described using the statistics of the 

samples   ̅        and the importance weights          . For instance, the mean and covariance of 

 ( ) can be approximated by 

 ( ( ))  ∑   ̅ 

 

   

 

 ( ( ))  ∑  ( ̅   ( ( )))

 

   

( ̅   ( ( )))
 

 

(16)  

respectively. Next, we want to sample from the posterior distribution in (6). After sampling   ̅   

from  ( ), the un-normalized weights are calculated as 

      
  (     ( ̅ ))   ( ̅ )

 ( ̅ )
                (17)  

and the normalized weights are calculated as 

   

   
  (     ( ̅ ))   ( ̅ )

 ( ̅ )

   ∑
  (     ( ̅ ))   ( ̅ )

 ( ̅ )
 
   

                (18)  

It can be seen that     will be cancelled from numerator and denominator in (18). Thus, the 

normalizing constant does not to be computed to approximate the posterior distribution using IS. 

If monitoring data from times    to    are available, equation (18) is modified to 

   

  ( ̅ )

 ( ̅ )
∏   (     ( ̅ ))

 
   

∑
  ( ̅ )

 ( ̅ )
∏   (     ( ̅ ))

 
   

 
   

                (19)  

2.4 Unscented Importance Sampling 

Proper choice of the proposal distribution is the key to an efficient importance sampler. If the 

proposal distribution is not close to the true posterior, most samples will be drawn from 

unimportant areas which results in decreased accuracy and computational efficiency. The 
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significance of a proper choice of the proposal distribution is illustrated in Fig. 1 and Fig. 2. Fig. 1 

illustrates sampling from a proposal distribution which is close to the actual symmetric sampling 

distribution and Fig. 2 shows a poor choice for a proposal distribution in. It can be seen that 

samples in Fig. 1 are better distributed and the weights are closer in magnitude compared to those 

illustrated in Fig. 2. In Fig. 2C however, all samples are located on the left side of mean of the actual 

distribution, making the sample biased. Consequently, more samples are required in case 

illustrated in Fig. 2 compared to that shown Fig. 1 in order to ensure that samples are well 

distributed throughout the important areas of the actual distribution. The optimal choice of the 

proposal distribution for sampling from   ( ) is  ( )    ( ) (Smith, et al., 1997) which is not 

practical because if    is computable then there is no need for importance sampling (Owen & Zhou, 

1998)(Merwe, et al., 2000). Our effort is therefore focused on finding a proposal distribution close 

to   ( ), to enhance the accuracy and computational efficiency of the sampler.  

 

Fig. 1 Importance sampling using a proposal distribution (solid line) close to the actual sampling distribution (dashed 
line). Samples in (B) are drawn from the proposal distribution and are weighted accordingly in (C). Size of the samples 

indicates sample weights. 

 

Fig. 2 Importance sampling using a poor proposal distribution (solid line) which is not close to the actual sampling 
distribution (dashed line). Samples in (B) are drawn from the proposal distribution and are weighted accordingly in (C). 

Size of the samples indicates sample weights. Since the sample is clearly biased, more samples are required which 
negatively affects the computational efficiency of the sampler. 

An intuitive and common choice of the proposal distribution is the prior distribution itself (Merwe, 

et al., 2000), which reduces (18) to the likelihood function and (19) to product of the likelihoods. 

This “sample from the prior, weight by the likelihood” (Rougier, 2008) approach, however, does not 

contain the latest information from measurements. 
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Revising the proposal distribution periodically using the information from measurements can 

improve the quality of the samples. For instance     ( ) can be used as the proposal distribution at 

time   , since it is likely to be closer to   ( ) than the initial proposal. However,     ( ) does not 

contain the latest monitoring information from   . Another solution is iteratively improving the 

proposal distribution as in Population Monte Carlo (PMC) methods (Cappé, et al., 2004).  In the 

PMC, each iteration involves repeating the importance sampling with a proposal distribution 

generated by a weighted sum of proposals of the previous iterations, while the proposal weights are 

adaptively adjusted. PMC and methods developed later on the same basis such as D-kernel PMC 

(Douc, et al., 2007) and M-PMC (Cappé, et al., 2008) showed to be promising in enhancing the 

performance of IS. However, the iterative nature of these algorithms requires running the system 

model several times more compared to the original IS which makes them computationally much 

more demanding than the original IS and consequently, less favourable for CS applications. 

Alternatively, an approximation of    which is obtained from a computationally faster solution can 

be used as the proposal distribution. We propose using the measurement update stage of the UKF 

for this purpose and call this approach Unscented Importance Sampling (UIS). A flowchart of UIS is 

illustrated in Fig. 3. As shown in the flowchart, each update cycle in UIS includes two major steps:  

1. UKF step: the posterior distribution of the IS step from the previous cycle,     ( ), is utilized as 

the prior of the UKF measurement update at time   . For the initial cycle, the initial prior,   ( ), 

is used instead. Next, the Gaussian posterior,   (    ( )   ), is obtained using the 

measurement update stage of the UKF, as described by (12) and (13). Thus, the UKF step uses 

   while previous monitoring data are accounted for in the prior. 

2. IS step:   (    ( )   ) from UKF step is used as the proposal distribution for the Bayesian 

importance sampling as described by (19). In this step, the initial prior is used as the prior in 

Bayes theorem and all monitoring data (   to   ) are accounted for in the weights of the 

samples. 

When new monitoring data becomes available, the algorithm will be repeated. The stopping criteria 

are flexible and application-specific. For instance, criteria such as reaching a certain number of 

calibration cycles or reaching certain parameter variance can be used.  



Page 13 of 39 

 

 

Fig. 3 Flowchart of Unscented Importance Sampling (UIS) 

  

1. UKF STEP 

Obtain monitoring data   at time    

    

    

 

No 

 

No 
Use     ( ) as prior of UKF 

2. IMPORTANCE SAMPLING STEP 

Use   (    ( )   ) as the proposal 

distribution in IS algorithm 

Obtain   (    ( )   ), i.e. the 

Gaussian approximation of posterior 

Use   ( ) as prior of UKF 

Yes 

      

Start (   ) 
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By substituting proper equations into each block of Fig. 3, the complete algorithm of UIS is obtained 

and is summarized in Algorithm 1. 

Algorithm 1: Algorithm of unscented importance sampling 

1. Set time       where   is monitoring time step (start with    ) 

2. Obtain monitoring data   . 

3. UKF step 

3.1. Set the prior of UKF step   
 ( )   (  

    
 ) where   

  ∑   
    ̅ 

    
    

and   
  ∑   

   ( ̅ 
      

 ) 
   ( ̅ 

      
 )

 
when     and   

   (  ( )) 

and   
   (  ( )) when    . 

3.2. Select Sigma points and their weights as follows. 

     
                                              

   

  
                       

      
  (√

 

    
  

 )

 

         (          )       (               ) 

3.3. Propagate sigma points through non-linear system model and 

obtain     (  ) where            

3.4. Calculate statistics of sigma points and propagated sigma 

points as follows. 

 ( )  ∑    

  

   

           ( )  ∑    

  

   

 

 ( )  ∑  [    ( )][    ( )] 
  

   

           (   )  ∑  [    ( )][    ( )] 
  

   

 

3.5. Calculate mean and covariance of the Gaussian posterior of 

UKS step as      
   (     (  

 )) and      
     ( ( )   (  ))  

  

where    (   ) ( ( )   (  ))
  
 

3.6. Set   (  
 ( )   )   (     ) 

4. IS step 

4.1. Set the proposal distribution   ( )    (  
 ( )   ) 

4.2. Sample   ̅   from   ( ) 

4.3. Simulate the model for each sample from time zero to   . 

4.4. Calculate un-normalized importance weights by   
    ( ̅ 

 ) 

  ( ̅ 
 )∏   (     ( ̅ 

 )) 
      and normalize them to obtain      

4.5. Approximate   ( ) with ∑   
  (   ̅ 

 ) 
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Repeat steps 1 to 4 for each calibration cycle until stopping criteria 

are met. 

 

This algorithm is inspired from the Unscented Particle Filtering (UPF) (Julier & Uhlmann, 1996) and 

ensures that the proposal distribution improves with time and contains information from all the 

monitoring data up to   . The final posterior distribution in the UIS is generated in the importance 

sampling step. Thus, unlike the KF family, no assumption of the model structure or distribution 

types is necessary. Moreover, the sampling based approach in both steps (UKF and IS) lets various 

model types (e.g., different numerical models) be incorporated in a straightforward way. The 

abovementioned characteristics make the UIS flexible for parameter calibration in various 

applications. 

In the case that the true posterior is multimodal, the presented version of UIS is still applicable. 

However, the performance of the algorithm diminishes because the Gaussian proposal cannot 

accurately represent multi-modal distributions. For such cases, the Gaussian approximation of the 

posterior in the UKF step can be replaced by a Gaussian mixture model.  

2.4.1 Defensive Importance Sampling in UIS 

In IS, the proposal distribution needs to have a heavier tail than the actual sampling distribution for 

the solution to be robust (Owen & Zhou, 1998). To ensure the tails of the proposal distribution  ( ) 

are heavier than the sampling distribution, we can mix  ( ) with a heavy-tailed distribution  ̂( ) 

such as a uniform distribution in a process called “defensive mixture sampling” (Hesterberg, 1995) 

or “defensive importance sampling”(Owen & Zhou, 1998),  

  ( )  (   ) ( )    ̂( ) (20)  

where   is the defensive mixture ratio and      . Moreover, the defensive mixture distribution 

searches the areas of the parameter space with very small probability density for potentially better 

parameter sets. A defensive mixture distribution can be added to UIS by modifying the sub-step 4.1 

of Algorithm 1 as 

  ( )  (   )  (  
 ( )   )    ̂( ) (21)  

where   is the mixture ratio and is one of the tuning parameters. A very small   does not affect the 

sample population and a very large   is likely to waste numerous model runs by weighting samples 



Page 16 of 39 

 

with negligible posterior weight. In the literature,           is recommended (Hesterberg, 

1995)(Owen & Zhou, 1998). 

3. Analytical Case Study 

Before the CS case study, a simplified case study is presented to demonstrate the application of UIS 

and compare it with two other algorithms, the measurement update stage of UKF and ordinary IS. 

This case study uses a significantly nonlinear analytical function as the system model and enables 

us to investigate the performance of UIS for various numbers of uncertain parameters with a 

reasonable computational effort. 

3.1 Case Description 

Assume a deterministic system described by 

  ( )  ∑   
    (    )

    ( )      
    (  )

    ( )

   

   

 (22)  

where   is the total number of   ,   is dimensionless location varying between 1 and 20,   is 

dimensionless time and      for odd   and       for even  .   ( ) is modeled by a scalar 

function denoted by   (       ) with a similar structure, 

  (   )  ∑   
    (    )

    ( )      
    (  )

    ( )

   

   

 (23)  

where    are the uncertain model parameters and    [  ]      is the uncertain parameters 

vector. In four time steps,          ,   ( ) is measured at two locations,     and     . These 

measurements are denoted by   ( ) and   (  ) for time step  . Measurements are subject to a 

Gaussian noise denoted by  , i.e.,   ( )    ( )    where     ( ) and   ( ) is Gaussian with a 

mean of zero and a standard deviation of 100. Since the model structure matches the true system 

structure, model discrepancy is equal to zero. Thus, we can write   ( )    (       )   . 

The prior distribution of   is assumed to be Gaussian denoted by   ( ) with diagonal elements of 

12 and a covariance matrix with diagonal elements of 1, and off-diagonal elements of zero. 
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At each of the four time steps, new monitoring data is obtained. Our objective is to find the 

posterior distribution of   at each time step, denoted by   ( ), where    is 1 to 4, by using 

Algorithm 1. We call this process a calibration cycle for each of the time steps.  

3.2 Calibration Scenarios and Comparison Metrics 

We solved this problem using the measurement update stage of UKF, ordinary IS with 200 samples, 

and UIS with 200 samples and no defensive mixture distribution. Three sizes of the uncertain 

parameter vector are considered     ,      and     . Table 1 summarizes all calibration 

scenarios considered in this case study. 

Table 1: Calibration scenarios in the simplified case study 

Scenario 

Name 
Method 

Number of 

parameters 

( ) 

Sample count 

( ) 

Simulations per 

cycle 

M10-UKF UKF 10 - 21 

M10-IS IS 10 200 200 

M10-UIS UIS 10 200 221 

M20-UKF UKF 20 - 41 

M20-IS IS 20 200 200 

M20-UIS UIS 20 200 241 

M50-UKF UKF 50 - 101 

M50-IS IS 50 200 200 

M50-UIS UIS 50 200 301 

 

To compare the accuracy of the methods, the Root Mean Square Error (RMSE) of the model output 

at time     is calculated at the end of each calibration cycle, using the expected value (mean) of 

the posterior distribution of  ,  

      √∑ [    ( )    (    (   ))]
   

   

  
 (24)  

where   (    (   )) is the mean of the posterior distribution of     (   ) obtained at calibration 

cycle  . 
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3.3 Results and Discussion 

Fig. 4 plots the RMSE of all scenarios listed in Table 1. It can be seen that the RMSE of UIS is 

considerably smaller than the RMSE of the UKF measurement stage and IS in all cases. In the M10 

and M20 cases, IS was more accurate than UKF but worse than UIS in terms of accuracy. In the M50 

case, IS performed worse than both UIS and UKF. 
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(a) M10  

(b) M20  

(c) M50  

Fig. 4: The RMSE of model output at the end of each calibration cycle for the (a) M10, (b) M20 and (c) M50 cases. The 
RMSE of UIS was well below RMSE of both UKF measurement stage and IS in all cycles of all scenarios. 
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From Table 1, it can be seen that the measurement update stage of UKF demanded the smallest 

number of model simulation. However, the UIS was always more accurate than the UKF. For 

instance in the case of 20 uncertain variables, it can be seen from Fig. 4(b) that the error measured 

by the RMSE of M20-UIS was more than 10 times smaller than the error obtained in M20-UKF. The 

reason why UIS is more accurate than either IS or UKF is that UIS samples from a proposal 

distribution that is closer to the posterior, without assuming linearity of the model and Gaussian 

distributions. Thus, UIS is able to capture the true posterior more accurately than measurement 

update stage of UKF  and IS without a dramatic increase in number of simulations. 

It can also be seen from Table 1 that UIS used more simulations (10.5%, 20.5% and 50.5% in M10, 

M20 and M50 cases, respectively) than ordinary IS but obtained notably more accuracy in all 

scenarios. It can also be seen that relative accuracy of UIS over the ordinary IS method increase 

with number of parameters. For instance, the RMSE of M10-UIS was less than two times smaller 

than the RMSE of M10-IS, while the RMSE of M50-UIS was more than 30 times smaller than the 

RMSE of M50-IS. The reason for this increasing relative accuracy is that UIS adaptively revised the 

proposal distribution while ordinary IS sampled from the initial prior in all cycles. Thus, when the 

number of uncertain parameters increase, IS was unable to estimate the larger-dimensional 

posterior distributions with 200 samples while UIS samples from important areas of posterior 

distributions and yields a much smaller RMSE with the same number of samples. 

For more in-depth comparison of UIS with UKF and IS, including an investigation of effect of tuning 

parameters on the performance of UIS, a more sophisticated CS case study is presented in the next 

section. 

4. CS Case Study 

A synthesized case study of CO2 injection in a deep saline aquifer is generated and used for two 

purposes; first, comparing the effectiveness of UIS with measurement update of UKF and IS with a 

static proposal; and second, studying the effect of the number of samples ( ) and defensive mixture 

ratio ( ) on the performance of UIS. Nine calibration scenarios are designed for this task. 

4.1 Case Description 

A horizontal and rigid saline aquifer is assumed, initially saturated with brine. The aquifer is 20 m 

thick and its base is located at depth of 2 km. The aquifer domain is assumed to be 1020 m × 1020 

m. Four homogeneous facies are assumed within the aquifer, distributed as shown in Fig. 5. The 
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porosities of the facies are assumed to be        ,        ,         and        , 

respectively. For all four facies, the porosity-permeability correlation is assumed to be      (  )  

        (  ) where    is the intrinsic permeability of facies   in millidarcies and    is the porosity 

of facies   as a bulk volume fraction (SPE International, n.d.).  

 

Fig. 5 True porosity distribution in the reservoir 

Initial salinity of the brine is assumed to be 50,000 ppm. The CO2 injection rate ( ) is assumed to be 

0.035 Mt/yr and the injection is assumed to take place continuously for 5 years through a vertical 

well located at the center of the domain and penetrating the whole thickness of the aquifer.  

All parameters are assumed to be known except the porosity and the permeability of the four facies. 

The porosities are considered to be the uncertain parameters and the permeabilities are obtained 

using the porosity-permeability correlation given above. The prior distribution of the uncertain 

parameter vector ([           ]
 ) is assumed to be a multivariate Gaussian with mean of 

[                   ] , diagonal covariance matrix elements of       and off-diagonal covariance 

matrix elements of zero. 

Pressure and saturation at the end of each year is measured at the injection well and two other 

monitoring wells, located 110 m away from the injection well in X and Y directions, respectively. 

Fig. 6 illustrates a schematic of the aquifer dimensions, the injection wells and the monitoring wells. 

The saturation measurement error is assumed Gaussian with a mean of zero and a standard 

deviation of 0.02. The pressure measurement error is also assumed Gaussian with a mean of zero 

and a standard deviation of 5×105 Pa.  
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Fig. 6 Schematic of the aquifer dimensions, injection well and the monitoring wells. 

 

4.2 System Model 

The system model is governed by the mass conservation equations for the multiphase and 

multicomponent flow in a porous medium of porosity  , which are given by 

 ( ∑   
      )

  
 ∑  (  

     )

 

    (25)  

where   
  is the mass fraction of component   in phase  ,    is the density of phase  ,    is the 

saturation of phase   and    is the source/sink volumetric flux of phase  . The volume flux of phase 

 ,   , is given by Darcy’s law, 

   
    

  
 (      ) (26)  

where   is the phase index,   is the intrinsic permeability,   is the gravity and     is the relative 

permeability of phase  .    is the pressure of phase   and is obtained by 

            (27)  

where      is the reference pressure and     is the capillary pressure. Relative permeability and 

capillary pressure of each phase are assumed functions of saturation. 

20 m 

1020 m 

1020 m 

Injection well Monitoring wells 
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Schlumberger’s ECLIPSE reservoir simulator is used for solving above flow equations to obtain 

pressure and the saturation of each phase (CO2 or water) and the molar fraction of each component 

(salt). GASWAT keyword in ECLIPSE allows simulating multiphase equilibrium of gas and aqueous 

phases using a modified Peng-Robinson equation of state (Soreide & Whitson, 1992)(Schlumberger, 

n.d.). No flow boundary conditions are specified on top and bottom of the reservoir, open boundary 

conditions are specified on reservoir boundaries and an adaptive implicit solution procedure is 

used (Tavakoli, et al., 2013). A more detailed description of the flow equations and the solution 

options in ECLIPSE is beyond the scope of this article and can be found in the ECLIPSE technical 

manual (Schlumberger, n.d.). 

4.3 Calibration Scenarios and Comparison Metrics 

Nine calibration scenarios are described in Table 2. All scenarios use UIS as calibration method, 

except scenario #1 which uses the measurement update step of UKF and scenario #2 which uses IS 

with prior distribution as the proposal. The 5th scenario is chosen as the base case for UIS where 

200 samples are taken and defensive mixture distribution is not used. Scenarios 3, 4 and 6 are 

similar to the base case, except for number of samples. Scenarios 7, 8 and 9 have different defensive 

mixture ratios compared to the base case, with a uniform mixture distribution bounded between 

0.01 and 0.5 for the porosities of all facies. For all scenarios,    in the UT stage is assumed to be 0. 

 

 

 

Table 2: Calibration scenarios in CS case study 

Scenario # 

and name 
Method 

Sample count 

( ) 

Defensive mixture 

ratio ( ) 

Simulations per 

cycle 

1: UKF UKF - - 9 

2: IS IS 200 0 200 

3: N50 UIS 50 0 59 

4: N100 UIS 100 0 109 

5: BASE UIS 200 0 209 

6: N500 UIS 500 0 509 

7:      UIS 200 0.1 209 

8:       UIS 200 0.25 209 

9:      UIS 200 0.5 209 
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Scenarios above are constructed so that three set of comparisons can be conducted:  

1. Comparing measurement stage of UKF, IS (with the prior as proposal) and UIS (scenarios 

1,2 and 3) 

2. Comparing the effect of number of samples in UIS (scenarios 3, 4, 5 and 6) 

3. Comparing the effect of defensive mixture ratio (scenarios 5, 7 and 8) 

Three metrics are chosen for these comparisons: 

A. The first metric is the normalized Root Mean Squared Error (RMSE) of saturation and 

pressure fields during the first 5 years of injection, evaluated after each calibration cycle. 

RMSE of each field is first obtained using the expectation of the corresponding error field, 

and is normalized by the variance of monitoring error corresponding to that field. The sum 

of the normalized RMSE of both fields is then used as the comparison metric. 

B. The second metric is the ratio of effective samples to the total samples and is denoted by 

     for scenarios 2 to 10, where effective samples size is defines as 

     
 

∑   
  

   

 (28)  

and 

     
    

 
 (1)  

     is a measure for sample quality of the particle filters (Arulampalam, et al., 2002). When 

all importance weights are equal,      is equal to   meaning that the samples are drawn 

from the true posterior. When most samples are drawn from non-important areas of the 

true posterior, most    become very close to zero while a few    carry most of the weight. 

In such cases,      becomes closer to one indicating that just a few samples are 

representing the whole distribution and sample quality is poor. In the extreme case that one 

sample carries all the weight (i.e. one    equals to one and all other    equal zero),      

becomes equal to one. This situation is known as filter degeneracy of the particle filters 

(Arulampalam, et al., 2002) and should be avoided. The adaptive nature of UIS is expected 

to increase      since the proposal distribution is adaptively adjusted to resemble to true 

posterior approximately. 
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C. The third metric is the expectation of the absolute error and standard deviation of the error 

for both the saturation and pressure fields. These fields are plotted in Section 4.5 and 

discussed qualitatively. 

4.4 Results 

The synthetic “True” system behaviour generated using true system characteristics and is 

perturbed by the monitoring noise as described in Section 4.1. Fig. 7 is a snapshot of the true 

saturation and pressure distribution of CO2 within the reservoir after 2 and 5 years of injection. 

Black “X”s in the saturation plots indicate monitoring locations. The CO2 plume reached the 

monitoring wells by the second year of injection. Thus, the first calibration cycle is mostly based on 

the pressure measurements because the pressure plume spreads considerably faster than the 

saturation plume.  

 

 

(a)                                                                               (b) 

Fig. 7 Snapshots of true (a) effective saturation and (b) pressure distribution (Pa) of the reservoir after 2 and 5 years of 
injection. Black “X”s on saturation plots indicates monitoring locations. 
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Calibration is conducted for all scenarios listed in Table 2. After each calibration cycle for each 

scenario, the model is stochastically simulated (i.e. Monte Carlo simulation) up to year 5 using the 

weighted samples from the posterior distribution of that cycle. The expectation and standard 

deviation of the error between true and forecasted saturation and pressure fields is then generated 

for each scenario. In all scenarios, the saturation error expectation and the saturation uncertainty 

(standard deviation) was more significant near the plume boundaries. The pressure error 

expectation and uncertainty were more complex and did not follow such a standard pattern. 

The RMSE of all scenarios and      for scenarios 2 to 9 were calculated after each cycle and are 

listed in Table 3. This table will be used as the reference for further comparisons is Section 4.5. The 

overall trend of the table suggests that UIS performed better than both UKF and IS, increasing 

number of samples increases the performance of UIS, and a moderate defensive mixture ratio 

increases the performance of UIS at the cost of a slight decrease in     . 

Table 3: RMSE and ratio of effective samples for all scenarios.  

Scenario  
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 

RMSE      RMSE      RMSE      RMSE      RMSE      

1: UKF 77.12 - 42.49 - 37.86 - 37.57 - 31.12 - 

2: IS 78.48 0.04 73.68 0.005 50.30 0.005 57.18 0.005 27.14 0.005 

3: N50 77.74 0.03 65.27 0.09 46.68 0.13 40.84 0.042 32.81 0.05 

4: N100 76.59 0.50 37.16 0.25 35.11 0.25 28.44 0.13 23.94 0.18 

5: BASE 80.72 0.30 38.55 0.09 30.21 0.17 29.60 0.65 22.05 0.34 

6: N500 75.42 0.26 34.91 0.15 20.64 0.34 28.45 0.79 21.88 0.44 

7:      83.61 0.19 33.89 0.17 20.88 0.50 20.00 0.57 23.71 0.27 

8:       75.50 0.28 22.83 0.061 31.42 0.16 29.01 0.46 21.17 0.29 

9:      78.05 0.21 39.62 0.13 29.74 0.13 28.05 0.16 22.04 0.15 

4.5 Discussion 

Now we compare the calibration scenarios to assess the performance of UIS against UKF 

measurement update and IS, and also investigate the effect of the tuning parameters (number of 

samples and defensive mixture ratio) on the performance of UIS. We also discuss the computational 

cost of these algorithms. 
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4.5.1 Comparing Calibration Algorithms 

The RMSE for UKF, IS and the base case of UIS (scenarios 1, 2 and 5) and the effective ratio of the 

samples for IS and the base case of UIS are extracted from Table 3 and plotted in Fig. 8. It can be 

seen that UIS had a smaller RMSE compared to both UKF and IS. With the exception of the last year, 

UKF update stage performed better than IS. This is because the static proposal distribution in IS 

was considerably wider compared to the real posterior. Thus, most samples were drawn from non-

important areas of the posterior probability density, resulting in a large ratio of samples having 

weights of zero or close to zero. Thus, the posterior distribution was represented by very few 

samples. This shortcoming is apparent in Table 3 and Fig. 8b. It can be seen that after the second 

year, number of effective samples for IS is very close to one. The number of samples should be 

increased to increase      for this case, which will also increase the computational burden. UIS on 

the other hand used the same number of samples but adaptively adjusted the proposal with the 

Gaussian approximation of the real posterior. This approach resulted in significantly larger      

compared to IS, which is more desirable. 

 

(a)                                                                                                            (b) 

Fig. 8 (a) RMSE and (b)      for scenarios 1 (UKF), 2 (IS with the prior used as proposal) and 5 (Base case for UIS). Data 

point connections and the small offset between data points of the same cycle are for clarity. UIS demonstrate smaller 
RMSE compared to UKF and IS, and has significantly larger ratio of effective samples compared to IS. 

 

Fig. 9 shows the absolute error expectation and error standard deviation of the saturation and 

pressure fields at the end of year five and after five calibration cycles for UKF, IS and UIS. In the IS 

scenario, the uncertainty in both the saturation and the pressure fields were almost zero and the 

error expectation for both fields were noticeably higher than UKF and UIS, because of having one 
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sample carrying most of the importance weight. The uncertainty in both fields were higher in UKF 

than in UIS. It is worth noting that while sampling-based solutions tend to underestimate the 

uncertainty, the UKF results do not necessarily represent the true uncertainty either because of the 

model linearization and the Gaussian assumptions in UKF method. 

 

Fig. 9 Absolute error expectation and standard deviation of saturation (S) and pressure (P) fields at the end of year 5 and 
after 5 calibration cycles for UKF, IS and BASE (UIS) scenarios. 

 

The accuracy of UKF is expected to deteriorate more compared to that of UIS when the distributions 

(prior and the likelihood) become non-Gaussian. The performance of UIS in case of non-Gaussian 

densities will not be affected as much as UKF, since no assumptions is made on the type of 

distributions and UKF stage of UIS generates the proposal not the posterior. 

4.5.2 Effect of Number of Samples on UIS 

Fig. 10 illustrates the RMSE and      for UIS with 50, 100, 200 and 500 samples (scenarios 3, 4, 5 

and 6), extracted from Table 3. The general trend of the RMSE in Fig. 10a shows that increasing the 

number of samples increases the accuracy of UIS, which was not un-expected in a Monte-Carlo 

based method. However, the difference between scenarios deteriorates when the number of 

samples increases, e.g., the difference between RMSE of N50 and N100 scenarios is more significant 

compared to the difference between RMSE of N100, N200 and N500 scenarios. Taking into account 

both accuracy and computational efficiency, N100 scenario maintained the best balance among rest 

of the scenarios. 
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(a)                                                                                                            (b) 

Fig. 10 (a) RMSE and (b)      for UIS with 50, 100, 200 and 500 samples. Data point connections and the small offset 

between data points of the same cycle are for clarity. Increasing number of samples decreased RMSE in general. The 
difference between the case with 200 samples and 500 samples was not significant. Ratio of effective samples increased 

with number of samples in general.  

According to Fig. 10b, the effective sample ratio increases with number of samples. This is because 

the weights are more evenly distributed among the samples when more samples are drawn from 

the posterior distribution. As a result, the variance of the weights decreases and      increases with 

 . 

Fig. 11 shows the absolute error expectation and the error standard deviation of the saturation and 

pressure fields at the end of year five and after five calibration cycles for UIS with 50 to 500 

samples. The uncertainty of both the pressure and the saturation fields are noticeably 

underestimated and the error expectations are noticeably higher in the N50 scenario compared to 

other scenarios, due to a very small sample size. Scenarios with more samples are expected to more 

accurately represent the true uncertainty in the pressure and saturation fields. Moreover, it can be 

seen that the error expectation is generally decreasing in both fields with increasing the sample 

size. 
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Fig. 11 Absolute error expectation and standard deviation of saturation (S) and pressure (P) fields at the end of year 5 
and after 5 calibration cycles for UIS scenarios with 50, 100, 200 and 500 samples. 

4.5.3 Effect of Defensive Mixture Ratio in UIS 

The effect of defensive mixture ratios of 0, 0.1, 0.25 and 0.5 (scenarios 5, 7, 8 and 9) on the RMSE 

and      of UIS are plotted in Fig. 11, extracted from Table 3. It can be seen that the      and       

scenarios resulted in smaller RMSE compared to the two other scenarios.      for      and       

scenarios was slightly smaller than the base case; however, increasing   to 0.5 decreased      

significantly. Increase in the defensive mixture ratio is generally expected to increase the 

robustness of UIS at the price of a slight decrease in     , provided the proposal is close the real 

posterior. When this is not the case, e.g. when the system model is poor or the initial prior deviates 

from the posterior significantly, the defensive distribution helps search a wider range of the 

parameter space and decrease the chance of degeneracy of the UIS.  
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(a)                                                                                                            (b) 

Fig. 12 (a) RMSE and (b)      for UIS with defensive mixture ratio of 0, 0.1, 0.25 and 0.50. Data point connections and the 

small offset between data points of the same cycle are for clarity. Increasing defensive ratio up to 0.25 slightly decreased 
the ratio of the effective samples, but the decline for       is more significant. The RMSE for        presented the best 

overall RMSE. 

Fig. 13 shows the absolute error expectation and the error standard deviation of the saturation and 

the pressure fields at the end of year five and after five calibration cycles for UIS with 0 to 0.5 

defensive mixture ratios. The error expectations for both the saturation and the pressure fields 

decreased with increasing defensive mixture ratio in general. 
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Fig. 13 Absolute error expectation and standard deviation of saturation (S) and pressure (P) fields at the end of year 5 
and after 5 calibration cycles for UIS scenarios with defensive mixture ratio of zero, 0.1, 0.25 and 0.5. All defensive 

mixture densities were uniform bounded between 0.01 and 0.5. 

According to current results, we recommend using a defensive mixture ratio between       and 

       with a uniform defensive distribution. While larger defensive mixture ratios might result 

in slightly smaller errors in some cases (e.g. when the prior is very poorly chosen), they tend to 

decrease      noticeably. 

4.5.4 Computational Cost 

A factor that should be considered when comparing the algorithm accuracies is the computational 

cost. The most computationally costly stage of all the algorithms discussed above was model 

simulation. The difference between the computational cost of optimal size UIS (e.g. N100) was 

almost half of IS (109 model simulation per cycle versus 200 model simulation per cycle) while the 

differences in accuracies were significant. The computational cost of UKF and optimal size UIS 

(N100), however, was significant (109 model simulations per cycle versus 9 model simulations per 

cycle). UKF and in general, KF-based algorithms are computationally more efficient than sampling-

based algorithms such as IS and UIS. The reason for this computational efficiency is the linearity 

and Gaussian assumptions in the KF-based algorithms which makes them computationally less 

costly. Sampling-based algorithms on the other hand require more samples in order to capture the 
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true posterior distribution more accurately without these assumptions. Thus, the difference 

between the computational costs of N100 UIS and UKF was not un-expected. The accuracy of UIS 

however was notably better than UKF, even though the prior distribution and likelihood were 

Gaussian in this case study. 

5. Conclusion 

The Bayesian-based Unscented Importance Sampling (UIS) method for mitigating parameter 

uncertainty is presented and applied to geological CO2 sequestration. The methodology accounts for 

expert opinion via the prior distribution at the beginning of the calibration and periodically revises 

the joint probability distribution of uncertain parameters utilizing noisy monitoring data.  

UIS is applied to a synthesized CO2 injection case study in order to be benchmarked against 

Importance Sampling with a static proposal and the measurement update stage of an Unscented 

Kalman Filter. The case study is also used to investigate the impact of the number of samples and 

the defensive mixture ratio on the performance of UIS. Nine scenarios are designed for these 

comparisons. In the case study presented, UIS outperforms IS and UKF. It is demonstrated that 

increasing the number of samples enhance UIS performance. Using a moderate defensive mixture 

ratio increased the performance slightly with the price of slight decrease in efficient number of the 

samples. It is suggested that defensive mixture densities become more significant when the prior 

distribution is chosen more poorly. In the case study, UIS performed best when a defensive mixture 

ratio between       and        was used, coupled with a uniform defensive mixture 

distribution. 

The benefits of UIS can be summarized as: 

 Stochastic parameter calibration: UIS utilizes monitoring data to periodically revise the 

parameter probability distributions and mitigate the parameter uncertainty. Moreover, 

revised parameter distributions can demonstrate which areas of a geosequestration site are 

poorly understood and require heavier monitoring. Thus, it can also contribute to an 

adaptive monitoring program. 

 Model flexibility: no assumptions are made on the system model. Thus, UIS can be used with 

linear/nonlinear/analytical/semi-analytical/numerical system models. 
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 Distribution flexibility: no assumptions are made on the type of probability distributions 

(prior/posterior/likelihood). Any type of continuous/discrete/formal/empirical probability 

distribution can be used as the prior or likelihood. 

 Accuracy and computational efficiency: It is shown that UIS can be more accurate than 

importance sampling with a static proposal distribution. It is also shown that UIS is more 

accurate than the UKF measurement stage, even with a Gaussian prior and likelihood. As a 

result, to obtain certain level of accuracy UIS is likely to require a considerably smaller 

number of samples compared to IS with a static proposal.  

Current work is subject to limitations that can be addressed in further researches, namely: 

 Current formulation does not account for systematic model error, e.g., error 

autocorrelation. While this is a fairly usual approach in Bayesian parameter calibration, it is 

possible to revisit the formulation in future works to include error autocorrelation.  

 As described in section 2.4, current algorithm could underperform for multi-modal 

posterior distributions. In those cases, a bank of UKFs can replace the single UKF for 

generating the proposal distribution. However, the added computational demand for such 

cases should be also taken into account. 

 When a very large dimensional parameter space is used, the computational demand of UKF 

becomes unfavourable. In those cases, Ensemble Kalman Filter (EnKF) can replace the UKF 

phase of the UIS method since EnKF does not require the sample size to increase linearly 

with the dimensionality of the parameter space. 
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